
Albatross: Dynamic Scaling for Heterogeneous Cycle
Scavenging HTCondor Clusters

Rohan Mathur1 and Tadas Aleksonis2

Abstract— Executing computationally-intensive tasks
in a distributed manner has become more popular
in recent years. HTCondor, software developed by the
University of Wisconsin to make the job submission
and execution process easier across compute clusters,
supports both dedicated compute nodes and idle desktop
workstations for computation. In a cluster that solely
consists of desktop workstations which only accept HT-
Condor jobs when they are idle, if the workstations are
at maximum utilization, the jobs in the queue will not
be executed until a workstation goes idle, leading to
starvation. The jobs in the queue are never executed
as there are no available machines accepting HTCondor
jobs. We introduce Albatross, a monitoring process which
enables HTCondor to dynamically add and remove nodes
from the system, based on current job throughput and
user-based preferences. We show that by integrating
HTCondor with Albatross, we can parametrize jobs to a
highly-customizable degree and observe an improvement
in reliable throughput correlated to the scale of capital.

I. INTRODUCTION

Executing computationally-expensive jobs effi-
ciently has long been a subject of interest. The
category of computationally intensive jobs spans
across everything from physics simulations to
big data processing with frameworks similar to
MapReduce. As such, any advancements in the
efficiency of executing these jobs could potentially
affect a multitude of different fields.

To speed up the execution of multiple
computationally-intensive jobs, architects have
turned to executing these jobs in parallel across a
wide number of machines. Whether the machines
are dedicated compute nodes whose sole purpose is

*This work was not supported by any organization
1R. Mathur is an undergraduate in the Department of Electrical

and Computer Engineering at the University of Illinois at Urbana-
Champaign rmathur2 at illinois.edu

2T. Aleksonis is an undergraduate in the Department of Electrical
and Computer Engineering at the University of Illinois at Urbana-
Champaign alekson2 at illinois.edu

to efficiently execute whichever jobs are dedicated
towards it or more dynamic systems, that utilize
idle time on devices to execute jobs, the process
of managing and distributing these jobs across
multiple compute nodes is often complex and time-
consuming. Because of this, many administrators
of these compute clusters often turn to a distributed
software framework for submitting and execut-
ing jobs. By offloading the task of distributing
and scheduling jobs across multiple heterogeneous
nodes to a software-based solution, the usability of
these platforms improves, and opens up room for
improvement in efficiently distributing jobs across
compute nodes.

One such framework used for distributing jobs
is known as HTCondor. Primarily developed by
the HTCondor team at University of Wisconsin-
Madison, the HTCondor project has enabled users
to easily distribute jobs across multiple compute
nodes. It features support for managing work-
loads on both dedicated resources for computa-
tion (rack-mounted clusters), along with desktop
machines where jobs will execute depending on
several factors (cycle scavenging). Like several
other solutions, it provides a job queueing mecha-
nism, scheduling policy, priority scheme, resource
monitoring, and resource management [1]. Users
can easily submit their serial or parallel jobs to
HTCondor, where it will place them into a queue,
and choose when and where to run the jobs based
upon a policy. Once running, HTCondor monitors
the progress of each job, and when completed,
informs the user of the task’s completion.

HTCondor has several advantages over existing
batch queueing systems. One of the unique aspects
of the framework is its ability to efficiently uti-
lize either both dedicated compute nodes and idle
desktop workstations, or utilize each in separate
instances. For example, HTCondor can be specif-

ically configured on desktop workstations to only
accept jobs when the mouse and keyboard have
been idle for a certain duration. Once the system
starts being used again and no longer marked as
available for computation, a unique checkpointing
mechanism exists which is able to migrate a job to
a different machine that otherwise would be idle,
with little time spent not doing meaningful work
on the task. HTCondor does not require a shared
file system across machines, and instead can either
route all I/O requests to the specific machine where
the input/output/intermediary files exist, or transfer
the job’s files on behalf of the user.

Although HTCondor is flexible enough to work
with both dedicated compute machines, alongside
cycle scavenging from other machines, it comes
with its downsides. For example, in a cluster
that solely consists of desktop workstations which
only accept HTCondor jobs when they are idle, if
the workstations are at maximum utilization, the
jobs in the queue will not be executed until a
workstation goes idle, leading to starvation. The
jobs in the queue are never executed as there are
no available machines accepting HTCondor jobs.

Because of this, we propose a new addition to
HTCondor, Albatross, a framework for detecting
starvation cases, and remedying it by dynamically
scaling up/down dedicated compute nodes in an
HTCondor pool. We plan to provide the following
contributions:

• Investigation of the starvation that occurs
within an HTCondor cluster consisting of
desktop workstations that execute jobs when
idle

• Investigation into spin-up and auto-
provisioning dedicated compute nodes,
along with spinning-down after the task is
completed

• Design and implementation of a middleman
monitoring service that detects starvation in
an HTCondor cluster, and dynamically scales
clusters if starvation is detected

• Design and implementation of an extensible
and parameterizable framework for control-
ling the behavior of scaling

• Improved performance numbers as a result of
the additional dedicated compute nodes

II. BACKGROUND AND RELATED WORK

A. HTCondor Overview

HTCondor was developed with the goal to make
executing distributed jobs easier for the user, and
make cluster management of machines more ef-
ficient and effective by optimizing the planning
and scheduling of jobs across these machines. By
optimally placing jobs on machines, HTCondor
can efficiently utilize a fixed-size cluster of either
homogenous or heterogenous systems. Addition-
ally, it can utilize desktop workstations that have
gone idle whose CPU cycles would be wasted
anyway.

B. Allocating Resources within HTCondor

HTCondor’s mechanism for allocating resources
is what makes HTCondor’s scheduling algorithm
effective. Job submission is simplified with a con-
cept of ClassAds. ClassAds are similar to an ad-
vertisement in a local newspaper, where a service
advertises its characteristics, and customers peruse
the newspaper to buy certain services. ClassAds
are made by each machine in the cluster. The
machines in the HTCondor pool advertise their
attributes, such as available memory, CPU type and
speed, virtual memory size, current load average,
along with other static and dynamic properties
[2]. Additionally, in the ClassAd, each machine
specifies under what conditions it is willing to run
an HTCondor job, and what type of job it would
prefer. This information is used when choosing
where each job should get distributed to. When
a user submits a job to the HTCondor cluster,
they also specify a ClassAd for the job, which
specifies the minimum requirements for the job
(i.e. minimum memory size, minimum disk space)
or also nice-to-haves, such as machines with fast
floating point performance if the job requires that
[2].

HTCondor uses both the ClassAds from jobs in
the queue and ClassAds from the machines avail-
able to do work in order to find a mapping between
them. It ensures that all requirements specified
in each of the ClassAds are satisfied. If these
requirements are impossible to satisfy (either there
are no machines available to do work that meet all
of the jobs in the queues requirements, or there
are no jobs in the pipeline) HTCondor essentially

spins and waits for a machine to be available to
pick up a job. ClassAds allow HTCondor to adapt
to nearly any allocation policy, and adapt to a
planning-based approach while incorporating grid
resources.

C. Existing Work
Being a dynamic, distributed scheduler, it is

intuitive to develop a model for HTCondor in
which it can dynamically scale with a new stream
of jobs. Often, when configuring these systems
that require distributed scheduling, the amount of
available nodes remains fixed, as the addition of
multiple new nodes is an expensive and infrequent
occurrence. HTCondor distinguishes itself as not
simply a distributed system or a cluster, but dis-
tinctly, a computing grid. One of the distinct fea-
tures about grid computing is its emphasis on CPU
scavenging, whereas a grid computing framework
can be installed on everyday computers and mobile
devices, such that spare cycles on a CPU can be
lent to the framework for job loads.

CPU scavenging is a versatile resource that
can render any set of regular computers into a
distributed cluster; other such projects have taken
this idea and applied it to their own use cases.
Stanford’s Folding@home [6] is a popular re-
search project where users can install software
locally on their computer in order to allocate
resources towards protein folding. People with no
understanding of protein folding can dedicate free
CPU cycles towards overarching research projects,
without seeing their own workload being throttled.
Folding@home’s framework does not satisfy our
needs, as the number of free computers is unde-
fined, as it is a framework that was popularized
through word of mouth, and it is only dedicated
towards protein folding. We would like to see a
more rigid, yet general, system.

Another popular technology that is used for
distributed computations is SLURM [4], an open
source resource manager aimed at scheduling for
high-performance clusters, such as the Blue Waters
Supercomputer at University of Illinois, Urbana-
Champaign. This technology is highly scalable
and has very high performance capabilities, as
exemplified by its extensive use in TOP500 su-
percomputers. While a heavily utilized scheduler,
it is primarily focused on large-scale clusters and

supercomputers, so its utilization towards desktop
workstations for CPU scavenging is not a priority,
such as industrial examples of prioritizing data
scheduling. Nevertheless, Slurm is an extensible
alternative that is also adept at high-throughput
computing scheduling, on par with HTCondor.

A final example of a competing example is
Berkeley’s BOINC (Berkeley Open Infrastructure
for Network Computing) [5]. It performs many of
the same types of high-throughput tasks that HT-
Condor utilizes, but with several key differences
that may not be deemed suitable for the types
of tasks which we want to add on to. BOINC
specifically has a centralized architecture which
distributes tasks to nodes, whereas HTCondor has
the distribution less centralized; this lack of em-
phasis on any particular node to perform schedule-
based decision making lends towards a more prac-
tical, desktop workstation-based system. Further-
more, BOINC requires specialized infrastructure
to operate, which limits the overall types of grids
we are to expect in dealing with in regards to our
perceived solution, whereas HTCondor lends itself
towards moreso desktop-like resource allocation.

III. PROBLEM AND MOTIVATION

A. Problem

The flexibility of HTCondor’s planning and
scheduling policies (ClassAd system) allow it to
function well with dedicated compute clusters,
desktop workstations that have gone idle, or a
mix of both. Dedicated compute clusters offer the
greatest power to performance ratios, always read-
ily available to execute HTCondor jobs, and never
starve the job queue. Desktop workstations do not
adhere to these provisions. If the desktops are
consistently in use, none are available to execute
HTCondor jobs. In this situation, the task queue is
often not emptied out; tasks build up, and no nodes
are available to execute the jobs. This situation
also makes a lot of sense - in a system where
users who are using the desktop workstations to
submit jobs that are also a part of the HTCondor
pool for computation, if more people are using
the workstations, there will likely be more jobs
submitted for execution.

B. Our Solution

To fix this dilemma, we propose the idea of
Albatross, that monitors HTCondor’s efficiency. If
Albatross detects that tasks are not being executed
due to a lack of compute resources, it can dynam-
ically scale the compute cluster to now include
dedicated compute nodes, which can then begin
work executing jobs from the queue. After the peak
load has subsided, and more machines are avail-
able/idle, Albatross has the ability to spin down
the added dedicated compute nodes if desired.

By being able to dynamically spin up and
down instances in cases where the system has
no available compute clusters for long periods of
time, we essentially create a compute cluster that
scales when it has to if the desktop computers
are under heavy load, and utilizes resources in the
cluster when they are not being utilized, therefore
potentially achieving optimal behavior with no
additional user intervention. This is desirable for
cluster managers looking for a low-cost solution,
while still providing some guarantees about even-
tually getting jobs executed.

IV. APPROACH AND SYSTEM DESIGN

A. Target Environment

Before introducing our approach, we briefly
describe the environment in which we expect Al-
batross to be deployed and used. We focus mainly
on the situation where all compute nodes are either
unavailable (due to either having no resources in
the pool, or all resources occupied by other jobs or
users). In this situation, the Matchmaker is simply
looping waiting for resources to be available and
not servicing the queue. This leads to any jobs
submitted not making any progress, and the overall
system coming to a halt, as long as the computa-
tional resources are being used up.

B. Architecture

We propose a new flexible framework that al-
lows for this situation to make meaningful progress
towards job completion. Within HTCondor, there
exists a framework that matches a job’s ClassAds
to a machine, known as the Matchmaker. This
Matchmaker has no fixed schema, and instead,
supports properties being met as either being true,
false, or undefined, if the schema is not found in

the corresponding ClassAd. Since the matchmaker
is the part of the system that matches jobs to
machines, it is the last common point between
what machines are available vs what jobs we have
to run. Because of this focal point, it is the logical
choice to detect starvation of the queue.

C. Detecting Stalling

Our system needs to be able to detect stalls in
the queue. We accomplish this by placing a timer
in the Matchmaker, which is reset upon dispatching
a job to a node. If this timer hits a certain amount
of time (meaning that a job has not been dispatched
within a predefined amount of time), along with
the fact that there are jobs in the queue, this means
the system is being starved. A design decision
was made here to not also require checking what
resources were currently available. This is because
we believe if the Matchmaker does not believe that
a valid match exists (which covers more than just
the machines not accepting new jobs), then we
want to include this in our stalling as well and
scale up here.

D. Choosing a Cloud Hosted Provider

The next design decision we had to make was
to identify a good cloud-hosted provider to use in
our elastically scaling system. Our cloud provider
requirements include quickly spinning up/down
instances of nodes at varying sizes, at generally
low cost. Additionally, the VMs must be relatively
easy to integrate within the HTCondor cluster,
which requires easily accessing the network con-
figuration for the newly created VM, along with
running some sort of setup script within the VMs.
There are two main cloud providers that meet
these requirements. Specifically, Google’s Com-
pute Engine, and Amazon’s AWS EC2 are the
industry-leading choices for spinning up and down
virtual machines en masse. Amazon Web Services’
EC2 service allows for easily spinning up and
down virtual machines, at a generally low cost,
along with Google’s Compute Engine. The two
are mostly comparable, in terms of both pricing
structure and features offered. For this project, we
ended up selecting Amazon’s AWS EC2 service,
due to our familiarity with its APIs and services,
though the choice could absolutely go either way.

EC2 has APIs that allow programmers to easily
spin up and down the compute pool.

E. Spin-Up and Spin-Down Process
To scale up and down the virtual machines, as

well as connecting it to our HTCondor pool, we
would have to first determine what type of instance
we want to use. For this aspect of our system, we
can choose to either start a new VM for every job
in the pipeline, start one VM that can run all of
the pending jobs in the queue (or maybe just the
higher priority jobs in the queue), and many other
potential options. Since this is highly varied, we
choose to make this parameterizable (described in
later paragraphs) by the user utilizing the flexible
schema of the ClassAd framework. After spinning
up the machine, configuring HTCondor to join the
pool (requiring coordination with the pool admin)
is required, along with configuring the network
and firewall [7]. We abstract this out with a setup
script that will take care of the headless install of
HTCondor on this new machine, along with con-
figuration with the HTCondor pool admin. After
the job is completed and other resources become
available for HTCondor to use, we can choose to
either checkpoint the currently running job on the
VM and move it over to a local machine in our
cluster if we prefer low cost to performance, or
allow the job to finish executing and then transfer
the results back to a central server for the user to
view.

F. Parameterization and User Control
A lot of these aspects of the system are highly

user preference dependent. For example, how ag-
gressively the user wants to scale up their system
in the case of starvation is a direct cost vs benefit
tradeoff. Additionally, how long the user wants
to keep the VM up and running after resources
become available is highly dependent on the user’s
budget as well. We abstract this decision making
process down to a single floating point score,
between 0 and 1, known as the capital parameter,
since it directly correlates to the cost the user
will incur while using our system. Based on this
parameter, we will make and document several
of our decision making process on whether to
scale up/scale down instances, how long to keep
the instances around for, and how many instances

to start. The user should understand what this
parameter means first, and then play around with
values until they settle on a good value that gives
them the tradeoff between performance and cost
that they desire. Additionally, the user can leverage
the ClassAd framework to specify whether a job
should run on AWS if it needs to or not. For
example, when a task has a large dataset associated
with it, it might not be worth it for the user to incur
the bandwidth cost of transferring the dataset to the
cloud-hosted AWS instance, and thus they can opt
out when submitting the job of allowing this job
to execute on AWS.

The mapping of these user defined parameters
to actual AWS actions was where the majority of
our research went into. Because of complexity, we
decided upon one static mapping between capital
parameter values to actions taken in AWS. For
example, capital parameters with a value less than
0.25 would always spin up a t2.micro instance of
an AWS EC2 on-demand node, since a t2.micro
instance costs less than other instance types avail-
able. Another factor that we had to choose a static
mapping for was the duration each newly added
node stays up for. We chose to use a mapping for
this parameter as well, up to one hour, after which,
we spin down and check for whether the stall is
still present in the system. If a job is still executing
on the AWS node at this hour mark, we checkpoint
the job and transfer it back to the central manager
to be dispatched to a different node, whether it
be a newly spun up AWS node or one of the
desktop workstations present in the cluster that
has come back online after being idle for the
required time period. It is additionally possible to
have both of these parameters be influenced by the
job itself. For example, the type of instance that
starts up can be manipulated such that it would
match the minimum requirements of the job in the
pipeline, which is not always a guarantee. This can
take place easily as the Albatross framework is
placed within the HTCondor Matchmaker, which
has access to the job’s requirements, along with
access to the AWS instances.

V. RESULTS

In testing Albatross, we sought to emulate an
environment that would emulate a standard group

Fig. 1. Job progress over time for a cluster with no Albatross.

Fig. 2. Job progress over time for a cluster with Albatross set to
have low capital (0.25).

of ten desktop users who perform various tasks
throughout the day using these workstations. As
such, we set up a system of 11 virtual machines,
with one as a negotiator node and 10 worker nodes
(akin to that of a desktop). As such, when HTCon-
dor would be installed on these VMs, it would
operate in the background as other processes also
run on these virtual machines, programmatically..
We tested Albatross by generating random jobs to
dispatch to the worker nodes every 5 minutes, each
of which vary in length and computational inten-
sity. As jobs would enter and leave, we measured
the overall progress made by the nodes across
100,000 seconds (27.78 hours). Testing nodes
would also enter and leave the worker pool, to
emulate people leaving desktops and returning.
Spinning up AWS instances has a minor cost in
time, as well as transferring data to and from the
AWS nodes. We establish a notion of progress
by counting the total number of completed jobs
divided by the total number of jobs dispatched to

the system.

In Figure 1, without the Albatross framework
enabled, we see what the default behavior of
HTCondor looks like. Over time, we see that the
progress eventually converges to approximately
1/8th of the jobs being completed. This indicates
that if a job was dispatched to the cluster during the
time period, the probability of it being completed
by the time our trial was over was approximately
1/8th. We see an initial lag in the graph, indicated
by the small flat portion of the graph before it
begins to make progress. This initial lag is due
to the counter set up within the Matchmaker, that
waits a predetermined time period before spinning
up an AWS node. During this time period, along
with the time spent executing the first job, we see
no progress made, as all of the desktop worksta-
tions are being utilized by the user, and none are
available for usable work. As they eventually begin
coming in and out of being idle, more jobs are
able to complete. The saw-toothed behavior seen
in the graph is indicative of the metric we used to
keep track of job progress. Every time the progress
percentage increased, it means that a new job was
completed by the cluster, and thus it incremented
the total number of jobs completed amount. The
tail of the saw toothed wave is when the cluster is
executing a new job, and thus the progress metric
is not increasing. We additionally see that at one
point between 40,000 seconds to 60,000 seconds,
there is a slight increase in the slope of the progress
line. This indicates that at this point, more desktop
workstation nodes were chosen to stop being used,
opening them up for computation of jobs in the
pipeline. The slope quickly goes back down, as
the desktop workstations begin being used again.
The overall time to complete a job was averaged
at 261.15 seconds, and the standard deviation was
measured to be 170.822 seconds. In the graphs
with Albatross enabled, two aspects should change
if the framework is working correctly. Firstly, the
saw toothed nature of the graph should become
compressed, indicating that jobs are completing
faster, and less time is spent between a job’s
completion times. Secondly, the average time to
complete a job, along with the standard deviation
measured should both decrease.

Once we enabled the Albatross framework, we

Fig. 3. Job progress over time for a cluster with Albatross set to
have mid capital (0.50).

Fig. 4. Job progress over time for a cluster with Albatross set to
have high capital (0.75).

saw much of what we expected. With low capital
(set to around 0.25), as seen in Figure 2, we found
that after 27 hours, our progress converged to being
a steadily decreasing graph at around 3/8ths. This
means that at that time period, 3/8ths of the jobs in
total were completed of the jobs dispatched. In the
graph itself, it holds with what we predicted. The
saw toothed waves in the graph are greatly com-
pressed from the previous graph, meaning that the
jobs are completing much faster. Additionally, the
overall time to complete a job decreased to 72.21
seconds, and the standard deviation decreased to
47.63 seconds.

As we increased the capital parameter, we see
that this trend holds consistent. The mid capital
run (set to 0.5), graphed in Figure 3, yielded an
average job completion time of 53.64 seconds with
a standard deviation of 35.23 seconds.

The high capital run (set to 0.75), graphed
in Figure 4, yielded an average job runtime of
34.20 seconds, with a standard deviation of 20.96

seconds.
Going from the low capital run to the mid capital

run, we see less improvement tan the run that
jumped from mid capital to high capital. Although
the computational resources are approximately
doubled, this could have been due to the mismatch
in the instance type that was spun up and the job’s
requirements (the jobs were not able to fully take
advantage of the additional computation power,
as the doubling of the computationally available
resources was not enough to make a significant
impact).

VI. FUTURE WORK

Plenty of unexplored opportunities remain in the
wake of Albatross. The current implementation of
Albatross is operational, but there are avenues in
which the scaling logic can be optimized, to further
tuned to the needs of a system with specific opin-
ions of capital expenditure. Currently, Albatross
spins up specific instances of AWS nodes based off
of capital, but this can be further improved upon
by implementing variable AWS instances based off
of the waiting workload. By spinning up specific
instances of nodes that match the computational
needs of the job queue, higher throughput can be
achieved.

Another point of interest is batching sets of jobs
to AWS instances. If multiple jobs in a queue
permit AWS execution, then we can specifically
tune the AWS instance to the needs of the jobs
and enable higher throughput. It is important to
note that all of these future possibilities involve
increasing reliance on the type of AWS node that
is spun up, which may incur higher costs to the
user. However, capital in this case may be contrary
to what a user wants, when they may be more
interested in jobs being finished than a fidelity
to the limit imposed by the capital parameter. As
such, utilizing work-adaptive capital, to allow for
flexibility in the logic of AWS node creation. More
complicated logic would be required to implement
flexible capital in order to keep it close to its
original intent, but models based on variance or
general throughput, rather than strict cost, may
achieve this sort of goal.

Finally, as we are students of University of
Illinois, we have EWS to our disposal. EWS has

a large existing infrastructure. People continuously
use their own personal computers, but may run into
poor system performance from a variety of differ-
ent processes running on their own workstations.
Allowing to pipe some of those tasks to EWS to
run in the background as a passive performance
boost would be a desirable and beneficial opportu-
nity for students to use. To further entertain this no-
tion of passive performance enhancement, a system
would have to be able to take general processes and
dispatch them to EWS; obviously not all processes
would qualify, as many processes require com-
puter specific properties, i.e. filesystem. However,
decision logic could be implemented to monitor
processes to determine if the cost of spinning up
an EWS (or AWS) instance is worth the cost of
transferring a process to such a node.

VII. CONCLUSIONS
In this report, we propose Albatross, a monitor-

ing process that detects starvation within HTCon-
dor’s Matchmaking service. The workload across
an entire grid that HTCondor may monitor may
vary with respects to the types of computing grids
it manages, but in the specific instances of wanting
to utilize available CPU cycles in a primarily
desktop-oriented, yet heterogeneous grid, it is im-
portant to consider the cost-benefit analysis of
dynamically spinning up new nodes in a network
in order to increase throughput. Primarily, if a job
must be delivered with a high priority, but a current
grid is busy, then a potential solution is to add extra
nodes to the network to finish the task.

As such, there must be a parameterized model
in which jobs can be weighted on their priority,
the user’s willingness to spend actual currency on
an immediate solution, and a method of deter-
mining whether it is worthwhile to wait several
more moments instead of adding new nodes to the
system. Conversely, the throughput of a job may
be highly increased if many jobs meet Albatross’
parametric logic and many different jobs can share
a single instance of an AWS server. We introduce
the notion of capital, which places a weight on the
user’s willingness to present new nodes into the
system at their own fiscal expense, and we identify
the necessary opportunities to consider when we
introduce a system as robust and dynamic as AWS
into HTCondor’s scheduling logic.

We see that as capital increases, the throughput
proportionally scales. While the work performed
by a mid-tier capital did not have as desirable or
noticeable effect as we may have hoped for, this
can be attributed more to setting-tuning than actual
faults within Albatross. We observe that as the cap-
ital increases, the variance of time-to-completion
for different tasks tightens, suggesting a stable and
reliable manner of increasing throughput for the
trade of cost.

REFERENCES

[1] HTCondor - What is HTCondor? [Online]. Available: http :
//research.cs.wisc.edu/htcondor/description.html.
[Accessed: 25-Oct-2017].

[2] 2.3 Matchmaking with ClassAds. [Online]. Available: https :
//research.cs.wisc.edu/htcondor/manual/latest/
2 3Matchmaking with.html. [Accessed: 25-Oct-2017].

[3] D. Thain, T. Tannenbaum, and M. Livny, Distributed Comput-
ing in Practice: The Condor Experience. Madison, WI: 2004,
pp. 14-18.

[4] Slurm Workload Manager, Slurm Workload Manager. [On-
line]. Available: https : //slurm.schedmd.com/. [Ac-
cessed: 25-Oct-2017].

[5] BOINC, BOINC. [Online]. Available: https :
//boinc.berkeley.edu/. [Accessed: 25-Oct-2017].

[6] Front Page, Folding@home. [Online]. Available: http :
//folding.stanford.edu/. [Accessed: 25-Oct-2017].

[7] T. Miller, There are many clouds like it, but this one is mine
(condor annex). Madison, WI: 2016.

