
Dynamically Improving Branch
Prediction Accuracy Between Contexts

Adam Auten
Department of Electrical and

Computer Engineering
University of Illinois Urbana-Champaign

auten2@illinois.edu

Tanishq Dubey
Department of Electrical and

Computer Engineering
University of Illinois Urbana-Champaign

tdubey3@illinois.edu

Rohan Mathur
Department of Electrical and

Computer Engineering
University of Illinois Urbana-Champaign

rmathur2@illinois.edu

Abstract—Branch prediction is a standard feature in most
processors, significantly improving the run time of programs
by allowing a processor to predict the direction of a branch
before it has been evaluated. Current branch prediction methods
can achieve excellent prediction accuracy through global tables,
various hashing methods, and even machine learning techniques
such as SVMs or neural networks. Such designs, however, may
lose effectiveness when attempting to predict across context
switches in the operating system. Such a scenario may lead
to destructive interference between contexts, therefore reducing
overall predictor accuracy. To solve this problem, we propose a
novel scheme for deciding whether a context switch produces de-
structive or constructive interference. First, we present evidence
that shows that destructive interference can have a significant
negative impact on prediction accuracy. Second, we present an
extensible framework that keeps track of context switches and
prediction accuracy to improve overall accuracy. Experimental
results show that this framework effectively reduces the effect of
destructive interference on branch prediction.

I. INTRODUCTION

Processors are using speculative techniques more and more
to increase the amount of instruction level parallelism that
occurs. This is evident in current cache designs, where data
is prefetched from far memory before actual values are ready
to be used. Prediction employs the same methodology in order
to reduce wasted CPU cycles waiting for a branch to be
evaluated. Rather than wait for the branch direction to be
evaluated, a prediction is made on the direction of the branch.
Correct predictions are rewarded with continuous execution,
however, incorrect predictions are given penalized by forcing
a processor to employ some sort of backtracking method, thus
wasting cycles correcting its error. The deeper the processor
pipeline, the more serious this penalty is, hence motivating the
need for higher accuracy predictors, usually through radical
new designs. We take a different approach – one that extends
current predictor schemes – by improving the accuracy of
predictors between contexts.

Our work builds on the observation that as a processor
switches between the contexts, the state of the branch pre-
dictor may destructively interfere with the predictions of the
upcoming context. It then becomes natural to ask if we can
reduce the effect of these context switches by learning when
to clear, or remove, prior history of a branch predictor.

We propose a framework that uses multiple counters and
other bookkeeping data to efficiently track and analyze branch

predictor behavior across context switches. Our framework not
only gives the branch predictor more data to operate on, but
can also consider the effects of a context switch through longer
histories.

This paper makes the following contributions:

• We provide insights into the behavior of branch pre-
dictors with respect to context switches, and show that
destructive interference is an issue that can lead to
performance degradation.

• We introduce the context switch accuracy framework
(CSAF), the first framework to use data for contexts as
input to a branch predictors, and show that in general
cases it can improve upon existing predictor accuracy.
For a single core ARMv7 processor running a standard
Linux 3.13 kernel with 1ms kernel tick rate simu-
lated in the GEM5 framework, the CSAF improves
misprediction on 7 out of 11 tested benchmarks in a
predefiend workload.

• We explain why the CSAF introduces interesting new
ideas for future research.

II. RELATED WORK

A. Dynamic Branch Prediction

Dynamic Branch Prediction has been a well researched
topic in recent decades, with modern advances focusing on
the improvement, refinement, or various schemes of the two
level scheme described by Yeh et al. [1] This method uses a
history table full of saturating counters that is indexed using
some hash of the branch address. The action of the prediction
is based on the current state of the counter, which is updated
once the outcome of the branch is evaluated. The problem here
is that this scheme, and variations of this scheme, suffer from
a few basic problems.

The first of these problems is the aliasing of branch history
addresses, and while there have been advances [2], [3] to
reduce aliasing, the prediction method remains the same, and
thus other problems remain unaddressed.

In addition, history length is a limiting factor in these
predictors, first simply by the number of entries that can be
stored in the history table and secondly the size of each entry
itself. Generous improvements in hardware technology are
allowing for larger tables simply through brute force. Table



entry sizes are also limited as a function of the number of
entries, and as the information in the entry decreases, the
less information the predictor has to act upon, including the
exclusion of context data from history table entries.

B. Effects of context switching

Some work has been done on analyzing the effects of
context switching and its effect on a running application or
overall workload. This research analyzes the performance of an
application during a specific workload, however, these papers
usually focus on cache performance, with a tangential focus on
branch prediction [4], [5]. They show that the effects of context
switching can be diminished in memory through clever cache
size manipulations or optimizations based on the expected
workload, demonstrating that context switches should not be
regarded as trivial to CPU workloads.

Indeed, work has also been done to analyze the effects of
context switching on branch prediction. Such research suggests
that context switching does not have the expected significant
effect on branch prediction accuracy as one would expect, but
rather, most accuracies reach a steady state when using realistic
time slices for contexts [6]. However, this is countered by other
works which state that in other, nontrivial, workloads, certain
branch predictors, such as the two level scheme previously
discussed, may be susceptible to accuracy loss when switching
contexts [7].

Other work has also been done to develop branch predictor
models that incorporate context data in order to improve
prediction accuracy [8]. Results from these works demonstrate
that using context data, appreciable results were obtained from
these schemes. However, the downside remains that these
schemes present wholly new methods for branch prediction,
instead of building on top of existing implementations that
have already been shown to perform well.

III. MOTIVATION

A. Lack of predictors that use contextual data

When looking at the most common branch prediction
schemes, we can see that they are mostly based off the work of
Yeh and Patt with their standard two level design. Of course,
systems built off this scheme generally exclude the idea of
contexts, with most of the data for the predictor coming from
current PC address possibly combined with previous accuracy
or PC data. This complete oversight of context data means that
in thee case where contexts do play a large role in workload
performance, the branch predictor will not know how the
context data plays a role in the prediction it is about to make.
Due to this lack of data, we feel that a gap has been created
in the branch prediction realm that completely ignores the fact
that in modern computing, contexts switches occur very often
and also occur across CPUs in the system. This then begs the
question of what would the performance of a context aware
branch predictor look like and what sort of insight could a
context provide to a prediction scheme.

B. Impact of context switching

In order to further justify the work needed to implement
the CSAF, we needed to quantify the amount of impact a

context switch has on branch prediction accuracy. For this,
a representative baseline workload was constructed to run on
the GEM5 simulator with with branch prediction accuracy
was recorded. Specifically, a single core ARMv7 processor
running a Linux kernel modified to have a context switch every
millisecond, ran a workload consisting of eight benchmarks.
With this workload, mispredict rate was recorded and graphed.
The results can be seen in Figure 1. As is demonstrated in
the graph, there is a significant spike in the mispredict rate
at every context switch. These spikes average around 200,000
cycles in length before reaching a steady state, which then
leaves room for improvement. In addition to this simulated
workload, a secondary, worst-case test was done in order to
see what the worst possible context switch might look like. In
order to simulate this, two methods were used. First, every ten
thousand cycles, all branch prediction history was inverting,
meaning every taken was set to not-taken, and every not-taken
was set to taken. With this scenario, which is visualized in
Figure 2, it can be seen that the mispredict rate spikes to 60%,
with mispredict rate spikes decreasing with predictor size. In
the second scenario, the entire history was not inverted, but
rather reset to the default predictor state. Similar results were
seen here, with mispredict rates spiking to nearly 40% and
decreasing linearly with predictor size. All in all, it is clear
that context switching does have an effect on the accuracy of
the predictor, leaving space to improve the predictor.

Fig. 1. Branch misprediction rate vs. time for a multi-process benchmark

Fig. 2. Transient response for Tournament branch predictors in response to
worst-case aliasing and reset

IV. DESCRIPTION

When analyzing destructive behavior between contexts
when using two-level adaptive branch prediction schemes, we
identified that the main source of initial misprediction stems
from saturation counters that have been flipped since the last
time the context ran in its time slice. The error arises when



the new context gets switched in, and begins executing, using
the branch history for a previous context’s execution patterns,
instead of its own. This insight into the poor behavior of branch
predictors immediately after a context switch was one of the
guiding factors when developing our novel approach to this
problem.

Another factor that influenced our design was the fact that
a reset of the entire branch predictor’s state is often more
detrimental than simply using a previous processes branch
predictor state, meaning that simply resetting the entire branch
predictor upon every context switch would not produce viable
results. Only in specific cases of destructive interference is
using a previous processes state more detrimental than a reset
of branch predictor state, meaning that our design needed to
have some adaptive qualities to it.

Using these factors as the primary motivations for our
design, we began formulating our design. First, we recognized
that resetting the entire predictor state was a very destructive
operation, especially in larger predictor tables. During a time
slice, we saw that for the benchmarks we ran, there would
often only be 15%-25% pattern history table (PHT) entry usage
by a specific program, with an even fewer number of PHT
entries changing their direction (from taken to not taken, or the
other way around). Wiping all of the PHT entries regardless of
whether they actually changed since the last time that specific
program was given a time slice is wasteful. Instead, we chose
a more moderate approach, to only wipe the PHT entries that
had changed direction (meaning, the PHT entries that changed
from taken to not-taken, and vice versa) since the last time the
program that is about to run. This ensured that only branch
predictor data that remains in the predictor is either reset data,
or data that pertains to the upcoming program, both of which
are better than the theoretical worst-case state of the predictor.

Secondly, we wanted to control this behavior dynamically,
choosing whether to reset the modified PHT entries if the
behavior is deemed to be optimal or not. To do this, we took
inspiration from PHT tables themselves, by utilizing saturated
counters. These counters are each associated with a specific
PID to PID transition, and indicate whether the PHT entries
that changed since the last run should be reset or not. By only
updating these counters when we see behavior that is better
or worse by a certain threshold, we remove noise and random
blips of branch misprediction data.

In order to update the saturated counters, we need to
classify both good and bad behavior. Building off of the
insight into what causes mispredictions after a context switch
(changed PHT entries), we came up with a metric to measure
whether resetting the modified PHT entries was a desirable
action or not. By simply tracking the number of PHT changes
that take place over the course of a process’ time slice, we
can compare this number to the previously seen number of
PHT entry changes. If it has changed by a certain threshold
by getting worse, then we invert the counter.

Updating of the saturated counters and choosing whether to
reset the modified PHT entries are both intrinsically linked to
a context switch. Because of this, both these actions should
take place during each context switch that occurs in the
operating system. First, the previous transitions number of
PHT changes should be updated with the new value, and the

counter should be inverted or not, depending on whether it
was a unfavorable or favorable outcome, respectively. After
the previous transition’s data is updated, we look at the new
transitions saturated counter, and reset the PHT entries that
were modified since the last time slice if the saturated counters
indicate that they should be.

V. METHODOLOGY

To test this framework out to see how it performs when
compared to baseline runs without the framework, we im-
plemented this framework within GEM5, a commonly used
system simulation tool.

To hold all of the various counters and keep track of the
number of modified PHT entries that changed, we chose to
implement this list as a fixed size two dimensional array. This
array is indexed by (current pid, next pid) upon every context
switch, with an LRU replacement policy if the array is filled.
Every entry in the two dimensional array holds two items. The
first piece of data is the number of PHT entry changes that
occurred after the last time the corresponding transition was
encountered. Secondly, each entry contains a saturated counter,
initialized to strongly not taken at the start.

Every context switch, two updates would occur in the two
dimensional array. Firstly, the previously seen transition’s entry
needs to be updated (old pid → current pid). If the previous
transitions number of changes in the PHT table was smaller by
a certain threshold than the newly found number of changes
in the PHT table, then we classify this as worse behavior than
what we previously saw. In this case, we should invert the
counter, so that the opposite action is taken than previously
taken, to see if that method yields better data. If the behavior
of the previously taken action is considered to be better than
what was stored, then we do nothing. We then update the stored
number of modified PHT entries for that particular PID to PID
transition entry in the array.

After we update the previously seen transition’s entry,
we have to decide what to do with the current transition
(current pid→ next pid). We then look up the new transitions
entry in the table. If the counter indicates taken, then we wipe
the modified PHT entries, and continue execution as normal.

If implemented in a real ARM system, one of the biggest
hurdles to go from simulation to a real working product is be-
ing aware of context switches, along with getting information
about process IDs. Luckily, this problem is easily circumvented
with a feature present on newer ARM processors, known as
ARM Software Thread ID registers [9]. By monitoring writes
these registers, notifying the branch prediction framework of
a context switch is very feasible.

VI. RESULTS

To form a baseline of how context switches effect multiple
benchmarks, we simulate context switching between multiple
threads. Using the full-system emulation mode [10], we sim-
ulated a single core ARM system using the O3 ARM v7a 3
CPU, running a standard Linux 3.13 kernel with 1 ms kernel
tick rate. Both the instantaneous misprediction for the predic-
tion and the average misprediction rate for each process was
measured. The instantaneous misprediction rate was measured



TABLE I. PER-PROCESS MISPREDICTION RATES

Benchmark Branch Mispredictions (%)

Baseline CSAF Always Reset

Bubblesort 10.128 10.051 11.31
FloatMM 3.095 3.136 3.572
IntMM 3.418 3.449 4.024
Oscar 3.811 3.786 4.136
Perm 18.339 18.001 17.32
Puzzle 3.854 3.849 4.09
Queens 11.853 11.904 10.88
Quicksort 14.638 14.679 14.699
RealMM 3.481 3.454 4.17
Towers 8.711 8.753 8.47
Treesort 8.505 8.477 8.86

using a 1000 branch sliding window. Large spikes in the
misprediction rate are observed on context switch boundaries.

To gauge the effectiveness of our algorithm of conditionally
resetting the predictor on destructive context switches, we
compared the instantaneous misprediction rate of our algorithm
to baseline. Figure 4 shows the differential misprediction rate
in response to a context switch, with the results tabulated
in table I. The differential rate is calculated by simulating a
multi-process benchmark with and without conditional context
switch resets. For each time, the instantaneous misprediction
rate is subtracted, yielding an instantaneous differential mispre-
diction rate. The large negative spike in mispredicts show that
instantaneous mispredictions are reduced at a context switch
boundary.

The average misprediction rate of each thread over the
course of its execution is shown in figure 3. We see that
while some benchmarks see a marginal improvement, others
are not improved. The small improvement seen is likely due
to the infrequency of context switches in our traces (1 every
millisecond). Due to limitations in the Linux kernel, we were
unable to simulate smaller time slices. Interaction between
threads determines to a large degree the effectiveness of our
algorithm. Misprediction is only improved if there is significant
aliasing within the predictor between threads. If the degree of
aliasing is small, resetting will do more harm by unnecessarily
un-learning any constructive or neutral aliasing. Additionally,
if the predictor footprint of a thread is small, resetting the pre-
dictor affects the performance of non-contiguously scheduled
processes.

VII. FUTURE WORK

In our simulations, we used a 128-entry BiMode predictor
to enhance the aliasing effects. Future work will involve
simulations on larger predictors that are more performant
and prevalent in industry. Additionally, instead of inverting
the saturating counters on bad behavior, we can use the
saturated counters to their full potential by incrementing and
decrementing them instead of simply inverting them. In our
trials, we found this did not provide much benefit, and that
the thresholding was enough to reset when destructive behavior
was identified. However, we did not simulate for very long (at a
maximum, 500,000,000 CPU cycles), which only encompassed
a relatively small number of context switches. Perhaps as
a program’s behavior got better or worse, using a saturated
counter would have allowed for even less unnecessary resets,
improving the misprediction rate even further.

Fig. 3. Fraction of mispredicted branches per process when all are run
together on a single core and context switched with a 1ms time slice

Fig. 4. Transient response of differential misprediction rate during a context
switch

When looking at the full branch prediction scheme, most
modifications that are made generally change how the table
operates or how to fundamentally change the scheme to be
more robust. With our findings, we posit a new methodology
that could be beneficial to prediction. Instead of modifying the
branch predictor by adding hardware components or wholly



changing it, we could modify a critical portion of the scheme.
Based on recent work by Kraska et al. titled The Case for
Learned Index Structures [11], we can see that there is a
significant performance in using machine learning to learn the
hash function into a map, or the access pattern to an array. In
the same lieu, the idea could be applied to branch predictors.
Instead of using a static hash function for the predictor table,
we can learn the best access pattern to the branch history
table. This could potentially significantly improve accuracy
as various parameters could be provided to the learning hash
function, such as context, to improve performance.

REFERENCES

[1] T. Yeh and Y. Patt, ”Two-Level Adaptive Training Branch Prediction”, in
Proc. 24th Annual International Symposium in Microarchitecture, 1991.

[2] C. Lee, I. Chen and T. Mudge, ”The Bi-Mode Branch Predictor”, 1997.
[3] S. McFarling, ”Combining Branch Predictors”, in digital, Palo Alto,

California, 1993.
[4] W. Hwu and T. Conte, ”The susceptibility of programs to context

switching”, in IEEE Transactions on Computers, 1994, pp. 994-1003.
[5] J. Mogul and A. Borg, ”The Effect of Context Switches on Cache

Performance”, in digital, Palo Alto, California, 1990.
[6] M. Co and K. Skadron, ”The Effects of Context Switching on Branch

Predictor Performance”, 2001.
[7] J. Chen, M. Smith, C. Young and N. Gloy, ”An Analysis of Dynamic

Branch Prediction Schemes on System Workloads”, Philadelphia, 1996.
[8] P. Chang, Y. Patt and M. Evers, ”Using Hybrid Branch Predictors

to Improve Branch Prediction Accuracy in the Presence of Context
Switches”, Philadelphia, 1996.

[9] ”ARM Information Center”, Infocenter.arm.com, 2017. [Online]. Avail-
able: http://infocenter.arm.com/help/index.jsp. [Accessed: 15- Dec-
2017].

[10] ”gem5 Full System Simulation gem5 Tutorial 0.1 documentation”,
Learning.gem5.org, 2017. [Online]. Available: http://learning.gem5.org/
book/part4/intro.html. [Accessed: 15- Dec- 2017].

[11] T. Kraska, A. Beutel, E. Chi, J. Dean and N. Polyzotis, ”The Case for
Learned Index Structures”, 2017.


